Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

نویسندگان

  • Santiago Badia
  • Alberto F. Martín
  • Ramon Planas
چکیده

The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider a LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknown, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Preconditioners for Stable Mixed Nodal and Edge finite element Representations of Incompressible Resistive MHD

The scalable iterative solution of strongly coupled three-dimensional incompressible resistive magnetohydrodynamics (MHD) equations is very challenging because disparate time scales arise from the electromagnetics, the hydrodynamics, as well as the coupling between these systems. This study considers a mixed finite element discretization of a dual saddle point formulation of the incompressible ...

متن کامل

Block preconditioners for finite element discretization of incompressible flow with thermal convection

We derive block preconditioners for a finite element discretization of incompressible flow coupled to heat transport by the Boussinesq approximation. Our techniques rely on effectively approximating the Schur complement obtained by eliminating the fluid variables to obtain an equation for temperature alone. Additionally, the method utilizes existing block-structured preconditioners and multilev...

متن کامل

A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD

The one-fluid visco-resistive MHD model provides a description of the dynamics of a charged fluid under the influence of an electromagnetic field. This model is strongly coupled, highly nonlinear, and characterized by physical mechanisms that span a wide range of interacting time scales. Solutions of this system can include very fast component time scales to slowly varying dynamical time scales...

متن کامل

Computing a block incomplete LU preconditioner as the by-product of block left-looking A-biconjugation process

In this paper, we present a block version of incomplete LU preconditioner which is computed as the by-product of block A-biconjugation process. The pivot entries of this block preconditioner are one by one or two by two blocks. The L and U factors of this block preconditioner are computed separately. The block pivot selection of this preconditioner is inherited from one of the block versions of...

متن کامل

A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD

The magnetohydrodynamics (MHD) equations are used to model the flow of electrically conducting fluids in such applications as liquid metals and plasmas. This system of nonself-adjoint, nonlinear PDEs couples the Navier–Stokes equations for fluids and Maxwell’s equations for electromagnetics. There has been recent interest in fully coupled solvers for the MHD system because they allow for fast s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 274  شماره 

صفحات  -

تاریخ انتشار 2014